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ABSTRACT

The investigation of the value of incorporating a priori information
into the TMA solution is continued in this study by computer simulations using
an asymptotically optimum estimation procedure. Two modifications to the
Maximum Likelihood and Maximum A Posteriori estimation methods for bearings-
only TMA are examined with a view toward their capability to improve numerical
convergence of the solution during early parts of the problem. The modifica-
tions are made to develop procedures which optimally use all available meas-
urements and information and to determine the true value of a priori informa-
tion incorporated into an optimum procedure. The Gauss-Newton algorithm
employed is modified such that at each solution iteration an optimum step is
taken along the calculated direction. This is accomplished by a line-search
minimization of the cost function (logarithm of the a posteriori density func-
tion). The previous procedure iterated towards a null in the linearized gra-
dient of the density function using only step-size bounds. The other modifi-
cation examined is the estimation of an observable (three-state) relative-
motion solution during the first leg which is then combined with a priori
information to obtain the full solution after a maneuver. In addition to the
study of the above modifications, multisensor MLE and MAP procedures are
developed which solve the TMA problem using bearing and frequency measure-
ments without own-ship maneuvers. Simulations are run to ascertain the impact
of range, speed, and center frequency a priori information on the numerical
convergence and solution accuracy of the multisensor algorithm.

The modified Gauss-Newton algorithm with optimum step-size calculation
improves numerical convergence for both the MLE and MAP solutions. However,
the use of a priori range estimates does further increase the probability of
convergence as well as decrease the number of iterations required, especially
during periods of poor observability. In addition, the modified procedure
does provide significant improvement in course and speed sclution accuracy
during periods of poor observability when a priori range estimates are
included. The three-state relative-motion problem provides an observable
solution which consistently converges with little cost during the first TMA
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leg when the full solution is not observable. However, when coupled with a
priori range and speed information and post-maneuver measurements during the
second leg, it does not significantly improve numerical convergence or solu-
tion accuracy over the zero speed initialization. The numerical convergence
and solution quality of the multisensor bearing/frequency algorithm is in
general improved by the use of range, speed, and center frequency a priori
information. This is particularly so for the cases and periods with low
observability and for the use of accurate center frequency estimates.
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CHAPTER I
INTRODUCTION AND OBJECTIVES

Classical Target Motion Analysis (TMA) from a time series of sensor meas-
urements involves estimating a target track which best fits the measurement
sequence according to some criteria of optimality. When the measurements are
accurate and sufficiently robust to ensure existence of a unique solution, the
problem can usually be solved in a timely manner using a variety of automatic
and/or manual techniques. In many cases of interest, measurements are not
sufficiently accurate and/or not uniquely definitive to arrive at a complete
solution. In those cases, solutions based solely on sensor measurements may
not converge or may require observation intervals that are tactically unac-
ceptable. The addition of a priori information or physical constraints may
provide tactically useful estimates when the solution is not directly observ-
able from only the measurements. This a priori information may take the form
of discrete multiple range and/or speed estimates along with some assessment
of the uncertainty in the estimates. These estimates may be obtained from
acoustic performance prediction, auxillary measurements (e.g., turn count) or
from physical constraints.

This study continues an investigation (reported in Reference 4) of the
value of incorporating a priori information into a TMA solution. Several
statistical and empirical techniques exist for solving the TMA problem which
can incorporate a priori information in some manner. Among the statistical
techniques, the Extended Kalman Filter (EKF) and Maximum Likelihood Estimate
(MLE) are most attractive from a computation viewpoint. Of the two methods,
the EKF has a much smaller computational burden but suffers from errors caused
by "boot strap" linearization. For this reason, the MLE was selected as the
baseline TMA algorithm. This is generalized to a Maximum A Posteriori (MAP)
estimate by incorporating the probability density function (p.d.f.) of the a
priori estimates. When the a priori p.d.f.s are multi-modal (as'in the
case of discrete range bands obtained from acoustic performance prediction),
the problem is segmented into parallel solutions for each mode. The parallel
solutions are continued until incorrect alternatives can be dismissed.

1-1




The previous study (Reference 4) investigated the potential value of
incorporating external information such as }ange, target speed and vertical
arrival angle (D/E) into the bearings-only TMA problem. The formulation of
the T™A algorithm was based on an MLE method modified to incorporate the
external information as a priori estimates of the TMA solution with statis-
tical uncertainty. This Maximum A Posteriori Probability (MAP) estimate and
the original MLE, although not optimum in a minimum estimation error sense,
are asymptotically optimum as the data base increases without bound. The
evaluation approach taken was the direct simulation of both the MAP and MLE
algorithms using common initialization to determine the specific impact of
the a priori information on an “"optimal" bearings-only TMA algorithm. The a
priori range information was treated as multiple bands of possible target
range representing the likely propagation paths. The speed information was
unimodal with various assumed uncertainty. The results of Monte Carlo simula-
tions indicated that: '

1. A priori range information did not provide the expected improvement
in solution performance over a solution procedure that used the
range information as initial estimates, but it did improve the
numerical convergence of the iteration technique.

2. A priori speed information did improve both solution performance and
numerical convergence.

3. A priori range information with D/E estimates based on assumed prop-
agation path substantially improved the solution performance for
conical-angle measurement (i.e., from a line or towed array),
although more refined estimates would be beneficial.

Since the principal benefits derived from the use of a priori information
were found to be associated with the numerical convergence properties of the
algorithm, work was continued to explore this aspect in more detail. It was
conjectured that the algorithms previously studied may not optimally use the
a priori information during the first several TMA legs where there is poor
observability. In addition, although at each numerical iteration a step size

1-2




1imit was used to aid solution stability, optimum (in terms of maximum a pos-
teriori probability) steps were not used. Because of the large computation
expense incurred when numerical convergence is poor early in the TMA problem
time, it is desirable to explore ways of optimally utilizing all available
information. The objectives of this study are therefore:

1. Determine whether convergence probability and/or execution time of
the MLE and MAP algorithms are improved by the use of an optimum step
size calculation at each solution iteration.

2. Determine the value, with respect to solution convergence and accu-
racy, of utilizing procedures early in the solution to extract only
observable information.

3. Determine the value of a priori range and target speed information
optimally incorporated into the improved algorithms.

4., Address the value of a priori information in a multisensor config-
uration (e.g., bearing and frequency measurements).

The first two areas address improving solution performance during times
when measurements do not support complete, bearings-only TMA solutions.
These "improvements" were incorporated into both the MLE and MAP algorithms.
The first approach involves addition of a line search along the calculated
step direction. The optimum step size is determined at each iteration. In
the second approach, a three-state solution is implemented (in the bearings-
only TMA algorithms) during the first leg where the full solution is not
observable. After a maneuver, thF observable solution components are opti-
mally combined with any a priori information and subsequent bearing measure-
ments to solve the full four-state problem. A multisensor bearing/frequency
TMA algorithm is developed and evaluated using the measurements without own-
ship maneuvers. The influence of a priori information on numerical conver- i
gence time reduction and solution accuracy improvement is investigated.
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These study areas should provide benchmark results covering many of the
problem areas associated with current TMA systems. The emphasis throughout is
placed on determining the value of external information on automatic TMA solu-
tion algorithms. As in the previous study, the computer simulations are based
on 30 Monte Carlo repetitions. The geometries simulated are typical subma-
rine maneuvering sequences. The magnitude of bearing errors used are repre-
sentative of many passive sonar systems.




CHAPTER II
MATHEMATICAL ALGORITHMS AND NUMERICAL APPROACHES EMPLOYED

2.0 PROBLEM FORMULATION AND THE MAXIMUM LIKELIHOOD ESTIMATION ALGORITHM

The basic target localization/motion analysis problem is formulated, as
m the previous study, in horizontal Cartesian coordinates on a North-East
reference frame. The TMA solution, assuming a target with constant course and
speed, is completely defined by the four-dimensional state vector, 5(tk)’ at
some time, tes along with its state or position keeping (PK) equations.

— — -
xl(tkr target position East of origin at t,

X,(t,) target position North of origin at t
- |72V k] 2 k (1)
East component of target velocity

Xq North component of target velocity

00 1
LOO 0 1

i(tk) = ¢kx(t0); ¢k = (2)

The solution is equivalently represented (at a given time) relative to own
ship by the target range (R), course (CT)’ speed (VT) and bearing (B), which,
in turn, are functions of x(t,).

R(t,) = [(xl(tk) " Xog (BT + (xy(8y) - *osz(tk”fr’ (3)

C = tan"(ﬁ.> (4)
X3
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Vp = (x3 + x3)% (5)
. x1(t) = Xos, (8
B(tk) = tan xz(tk) - xosz(tIJ (6)

(tk) is the own-ship Cartesian state vector at time ty.

2os

The TMA solution algorithms studied are the Maximum Likelihood Estimator
(MLE) and Maximum A Posteriori (MAP) statistical estimation procedures. For
the bearings-only case with a priori information, this amounts to determining
the state estimate ; which minimizes the cost function defined as the negative
logarithm of the joint a posteriori probability density function for the meas-
urement sequence Bm(tk), k=1, N. That is

N
v.J ~=0 (7)
ol x=x ~
where
N ~ ~ -~ -
(B (t,) - B(t,))? (R(ty) - Ry)2 (Vo - Vj)
N k k 0 0 T 0
N Tt M (8)

and where Eb, Vb are the a priori values of range and target speed with
assumed Gaussian uncertainties Ops Oy The details of this formulation, as
well as the Gauss-Newton numerical procedure for its solution, are described
in Appendix A of the previous study report (Reference 4).

The essence of the Gauss-Newton method used previously and modified in
the present study involves a numerical iteration sequence to solve Equation
(7) and thereby achieve a local minimum of the function JN. The standard
iteration algorithm obtained by expanding the gradient in a multidimensional
Taylor series about a previous or initial solution g%(tk) is:

) = M) a0 <a <l (9)
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where "a" is the scalar step size of the iteration, ]% is the gradient vector of
aN at gg(tk) and wz is the expected value of the second partial (or Hessian)
matrix of JN at 5%(tk).

IF = VXIJN (10)

% T, N
et EI}lzvin :l (11)
%

y~ is also Fisher's Information Matrix for the estimation problem, and its
inverse represents a lower bound on the covariance matrix of the solution when
evaluated at the true solution. Equation (9) is solved by Gaussian elimination
at each iteration step until a stopping criterion, based on the normalized
magnitude of the vector 2}+1(tk) - QF(tk), is satisfied. The derivations for
the calculation of 1& and wz and of the so]ution‘g(tk) at each time step are

given, as well, in Appendix A of Reference 4.

The present study investigates two modifications to the previously used
Gauss-Newton algorithm for the MLE/MAP solution for bearings only TMA. An
optimum step size, a, is calculated at each iteration of Equation (9) along
the calculated Gauss-Newton step ([wl]"x}). The previous procedure merely
limited the magnitude of the solution step of each Gauss-Newton iteration. In
the second approach, a three-state relative motion solution is implemented
during the first leg, where the full solution is theoretically unobservable,
of the bearings-only TMA problem. In addition, a method for bearing/frequency
multisensor TMA is developed and evaluated without own-ship maneuvers using
the same numerical approaches.

2.1 OPTIMUM STEP SIZE CALCULATION

During the previous study, the step size for each solution iteration
(Equation 9) was 1imited to a physically appropriate maximum size. This was
done to facilitate convergence by not allowing the solutions to make wild
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oscillations by continually overshooting the optimization surface minimum due
to poor observability (shallow minima) or linearization errors in the solu-
tion calculation. The solution step was normally selected as the Gauss-Newton
correction vector (with a=1), unless its normalized vector magnitude was
greater than some predetermined 1imit, in which case the correction was
reduced to meet the limit, i.e.,

1 if e < W?

as (12)
fw‘ .
1 otherwise

where

~
(11]

= (M) - AT EM ) - 2

w2

and where

L= , and 01, 0, are defined constant weights.

2
0 0 O 5
p—

The Tocus of points Gﬁich generate a constant € define a spheroid whose radius
is oy in the X1» X9 plane and s in the X35 Xg plane, and whose center is at
the previous solution. The surface e=1 therefore defines a small region about
the previous iteration. When €2 < 1, the iteration process is assumed to be
converged and 5%+1(tk) is the final solution.

Although this step size 1imiting scheme did improve convergence, it also
was found to reduce the advantage attributable to a priori information. To
determine the extent to which the numerical procedure impacts the comparison,
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it was decided to use an optimum step size calculation to determine the con-
vergence properties for solutions obtained both with and without a priori
information. The difference then should define more accurately the value of a
priori information.

——t. 2

The optimization of the step size parameter "a" of Equation (9) is
accomplished by a one-dimensional optimization (1line search) along the Gauss-
Newton direction, based on minimizing the cost function. Therefore, the opti-
mum step size, a*, is that value of "a" between anin and Anax which minimizes
JN(a) along the direction on the optimization surface defined by the solution
[¢“1"1¥. The minimum is determined by the combination of a Fibinacci search
and a quadratic fit to JN(a). The limits of search are

m——— e =

1/¢

2
n

min

! 2, if 452
e—

a = (13)
max W/e, otherwise.

The Fibinacci search reduces the interval containing the minimum to

1/4(amax - amin) by comparing the value of JN for selected intervals. The two
end points and center value of this interval are then fitted to a quadratic
function for which the minimum is calculated by

 Map)(a3 - a3) + May)(ad - a3) + May)(ag - a)

. a* = (14)
: 2 M(a))(ag - 2y) + May)(ay - a5) + Mlag)(a, - ay)

() ‘

% which is the minimum of a quadratic function fitted by Lagrangian interpola-

tion. The step size “a" to be used in the solution iteration is then

* *
3 ax® if a* < 3 ip OF 2% > Anax

’ a=¢1 , if a* 4, 2 and Anax > 1

a* , otherwise.

2-5




T T T T T T T YT ey v e

|
L
!
!
s
h

When convergence is achieved (e? < 1), “"a" is then calculated as the value mini-
mizing JN between am1n=° and amax=2 along the solution direction.

2.2 THREE-STATE SOLUTION

During the initial leg of bearings-only TMA, the full solution is not
theoretically observable. Even during the first few legs, after one or two
maneuvers, observability is poor, especially for convergence-zone ranges. To
obtain useful information during the early stages of the solution when observ-
ability is poor, a three-parameter solution was calculated and used together
with the a priori information to solve the full four-parameter problem. Three
possible approaches that were considered are relative motion, constrained
range and constrained speed. The relative motion solution was selected
because it is directly applicable to both MLE and MAP methods. There is no
subset of the four Cartesian coordinates which is directly observable without
own-ship maneuvers. One can observe bearing and all derivatives of bearing at
some reference time (to). A three-state solution which defines all observable
information consists of bearing and a pair of orthogonal velocity components
normalized by range. The velocity components which most naturally relate the
derivatives of bearing are the cross range and down range velocities (i.e., R8
and ﬁ, respectively). In this formulation, the solution vector at time to is

Bo

n(ty) =| &

where %
Pg = Ro/Ry (16)

The bearing acceleration at "to" is given by

By = ~2Bofy (17)
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Note that 80 is not a suitable coordinate because the actual bearing time
function is not representable by a quadratic polynomial. The three coordi-
nates presented above allow exact extrapolation to any time (t) as long as
neither ship maneuvers. The expression for bearing at any time (tk) can be
developed by simple geometry as

o ooty
B(tk) = Bo +tan"tf ———
1+ poAtk
Atk = tk - to (18)
The normalized range at tk is
R(tk) : 2 - 2
D(tk) = —RB— =\/(BO t )%+ (1 + ppat, ) (19)

Expressions for é(tk) and B(tk) can be obtained by differentiafing Equations
(18)and (19).

B(t,) = By/p%(t,) (20)
ot) = (py + (B + 63)at, )/o2(t,) (21)

Note that Equations (19) through (21) are not required to solve for i(to) but
allow one to extrapolate an estimate at "to" to anyaother time. The solution
procedure for estimating the three-state solution (n(ty)) is a three-state
MLE algorithm using the modified Gauss-Newton iteration procedure. The gra-
dient of a(tk) with respect to n(to) is readily shown to be
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sy | B B(t,)
v B(t,) = x (22)
‘ 1 k D(tk)
1 Atk sin B(tk)
- i D(tk)
L .
| With é(tk), S(tk) defined in Equations (18) and (19). Thus, the iteration
3 equation for the relative motion solution is
-
H | 2ty = nf(tg) + am’ (23)
1
5 where Aﬂz is the solution of
3
R
j Y+t =0 (24)
1 with
! N h
1 ~ -~
K Z (B,(t,) - B(tk))VHB(tk) (25)
k=0
and
1 N ~ ~
b=z PIRAICALIICHE (26)
k=0

5 "a" is the optimum step size weight calculated using the procedure developed for
L the full solution. The iterations continue until €2 < 1 or the maximum number
of iterations is reached.

. (88)2 , (aB)? + (aD)?
2= 01 * 30';
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with

- [}
01 = ,01

0y = 01/T

The relative motion solution continues until own ship maneuvers. At that
time, the relative motion solution is combined with a priori information to
generate a four-state initialization solution. The relationships between the
relative motion solution, target speed and target range at time tk is a func-
tion of initial range (RO).

R(t, ) = Ryy/ (1 + ot ) + (Bgat,)? . (28)

V2 = (Ryfy - Voo sin(By - Cp))2 + (RyPp - Vo  cos(By - Co))2  (29)

The MAP solution can be optimized directly, since n minimizes the sum squared
bearing residuals for any value of RO. Then one can find the value of R0 which

minimizes the a priori terms in the cost function subject to the constraint of
Equation (29). Let

(30)

a priori =~ 20%

where Rb and V are a priori estimates of range and speed and OEO and o§ are
the respective variances of the estimates. Using Equation (29), V can be
explicitly defined as a function of ﬁo so the minimization is a one-
dimensional problem. When a priori speed measurements are available, the min-
imization must be performed numerically. When only range information is
available, then V=0 and oy represent a physical constraint on practical target
speeds. In that case, the optimum range estimate is
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1 ) RO VOS Fopo COS(BO - CO) - Koéo Sin(eo - CO)
R,/ \% Oy
a 0 0 0
Ry = Ry S ~ (31)
2 2 \2
1+ Ro (-R-OBO) + (FODO)
o2
! % ‘o i

This procedure generates an initial solution for the second leg of the TMA
problem, which is based on solving for the information observable from the
bearing data using a modified Gauss-Newton MLE algorithm, which is then opti-
mally combined with a priori information to generate a complete solution.

This procedure should provide the optimum solution available from the first
leg if the a priori model is correct. Since the relative motion solution is
independent of range, it is common to all propagation path assumptions. If
the combination of relative solutions with a priori range is performed for all
path assumptions, it may be possible to determine the correct path by examin-
ing the speed estimates given by Equation (29). This would depend on geometry
and bearing accuracy. For example, a high bearina rate, ¢irzct-path geometry
would be distinguishable from a convergence zone but a closing geometry may
not resolve the correct path.
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2.3 BEARING AND FREQUENCY MULTISENSOR TMA

For bearings-only problems, own ship must maneuver to obtain a full TMA
solution. When additional measurements are available, such as range rate
(from Doppler analysis of frequency measurements) or bearings from another
array, it may not be necessary to maneuver. Convergence without maneuvers,
however, may be too slow for tactical considerations, and thus the use of a
priori information can potentially be of value in reducing solution converg-
ence time. This aspect of the problem can be investigated by TMA simulations
using the MLE and MAP algorithms modified to accept multisensor data. Note
that maneuvers were not precluded for this case but were not considered
because the problem would be similar to the bearings-only problem. Also, they
did not provide additional insight to the value of a priori information.

An algorithm for the solution of a bearing/frequency multisensor TMA is
developed using the MLE/MAP approach. The problem formulation is the same as
that for the bearings-only case, i.e., a four-state horizontal solution in
Cartesian coordinates, except that frequency measurements are used along with
bearings, and the test runs are made without own-ship maneuvers. There are
five solution parameters since the base frequency (fo) (without Doppler
shift) must be estimated. A procedure is developed in the Appendix to opti-
mize ?0 as an explicit function of the estimated range rate (a function of the
state solution), the frequency measurements and the a priori estimate of fo.
The value of incorporating a priori knowledge of fo is therefore evaluated
along with that of range and speed.

The development of the computations for the bearing/frequency MLE (or
more specifically MAP) approach with a priori knowledge of the base frequency
is given in the Appendix. The MAP algorithm using additional a priori infor-
mation (range and speed) is formed by incorporating into the a priori proba-
bility density function (p.d.f.), developed in the Appendix, the appropriate a
priori p.d.f.s. This results, as in the bearings-only case, in additive tevms
in the log likelihood ratio for the state vector:

Yr=dg* Elg (R(ty) - Ry)? + Elz (U(tg) - Vp)? (32)
UR (o] v
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where JLR is the log likelihood ratio (cost function) from Equation (20) of
the Appendix.

The first and second gradients of JER with respect to the reference state
vector x(to) are required for the Gauss-Newton solution procedure. The calcu-
lations for the gradients of JLR are derived in the Appendix. The gradient
calculations for the range and velocity a priori terms are the same as in the
bearings-only algorithm except for the second gradient of the a priori veloc-
ity term. When speed is unknown a priori but is bounded by physical con-
straints, the speed estimate is zero and the sigma represents an average speed
(or one-half of the maximum speed). The a priori velocity term in Equation
(32) would be

V2(tg) x3(tg) + xj(tg)

J, = = (33)
v 20 204
=0 V0 Vo
The second gradient of Jy _ is then
20 -
-
Yt x(t) | 57| ¢ (34)
=r0f =400 20 1
v 0 =~
OA
LY

where I is the 2x2 identity matrix. This expression for the second gradient
is unfortunately not consistent with that used in the bearings-only cases.

The expression presented in the previous study was developed for use with a
priori speed estimates and does not collapse to the correct expression when a
priori speed is not available. Fortunately, the speed term does not affect
the solution in that case, when only bearing inputs are observed. For bearing
and frequency observations, the frequency measurements are related to veloc-
ity and it was found that the velocity components of the { matrix formed a
singular matrix when the incorrect second gradient was used. This did not
occur with the bearings-only inputs. During investigation of this problem, it
became apparent that MLE should be formulated (when no a priori information is
available) by incorporating range and speed bounds in the cost function as
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Ez(to) Gz(to)

Jduwre =4 toogr— (35)
ME MLE max max
Where Rmax and Vmax are chosen to bound the expected range and speed. This
form would lead to a ¢ matrix of the form
1
L 10
max
¢=¢MLE+ ) (36)
0 . I
L max

This would have the properties of the Marquardt Gauss-Newton algorithm using a
physical constraint. This procedure was not evaluated but it will guarantee a
positive definitelw matrix and will not bias the solution if Rmax and Vmax are
chosen correctly.




CHAPTER I1II
SIMULATED TMA SCENARIOS

3.0 OPERATIONAL SCENARIOS

[ O .-

The operational scenarios simulated for the present study are basically
the same as those described in the previous report (Reference 4). Own ship to
target rarges from 10 to 109 kiloyards were modeled covering direct, first and
secorid convergence zone (CZ) acoustic propagation paths. The acoustic propa-
gation properties assumed are realistic, yet general enough to represent many
different oceanographic conditions. The target-ship courses used, which
remained constant over a given run, were 146 degrees and 256 degrees. These
present an initial broadside (crossing) and closing aspect, respectively.
Table 3-1 summarizes the propagation paths and initial true target ranges as
well as the initial range estimates and standard deviations used in the TMA
computer simulations.

e
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Table 3-1. True and Assumed Acoustic Propagation Paths and Range Values

TARGET COURSE | PROPAGATION mgﬁNg‘éTH TR”MQ’EGET ASSUMED RANGE | R,

(deg) PATH (kyd) (kyd) (kyd) (kyd)

Direct 0-30 10, 20 15 7.5

256 st CZ 45-55 54 45 4.5
(closing) 2nd CZ 90-110 109 90 9

Direct 0-30 10, 20 15 7.5

146 1st CZ 45-55 46 55 5.5
(crossing) 2nd CZ 90-110 91 110 11

Initial true bearing was 56 degrees for all runs. Own ship had an initial

bearing of 0 degrees and maneuvers consisting of standard 60-degree lead/
; 60-degree lag with leg times of 5 minutes duration and turn rate of 2 degrees ‘
| per second. Both own ship and target maintained a constant speed of 10 knots.
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3.1 SIMULATIONS

Simulations were run in three phases. These were the bearings-only case
with optimum step size calculation, the bearings-only case with a three-state
relative motion solution during the initial TMA leg, and the bearing/
frequency multisensor case with no own-ship maneuvers. Each simulation of all
three phases was run with 30 Monte Carlo repetitions, and with run times of
15 minutes for direct-path true range and 30 minutes for the CZ true range
cases. Measurements of bearing or bearing and frequency were input to the TMA
problem every 20 seconds, and solutions calculated by the MLE or MAP algorithm
every minute. Bearing measurement error for the 20-second averages was
unbiased with og = 0.2 degrees for all but a few of the bearings-only runs which
had og = 0.5 degrees. Frequency measurements were expressed as normalized Doppler
shifted values of the true center frequency (fo = 1) using the true simulated
range rate values. The frequency measurement error standard deviations (of )
were 107! and 107", again normalized by the center frequency. The noise com-
ponent of each measurement time series was simulated from a Gaussian pseudo-
random number generator, with an independent sequence used for each Monte
Carlo repetition.

3.2 A PRIORI ESTIMATES

Initial values for range, speed and center frequency with uncertainties
were defined for use as solution initialization and a priori estimates. The a
priori range values and uncertainties assumed in the various runs are listed
in Table 3-1. Initialization for the position coordinates of the solution are
calculated from these assumed range values and the first bearing measurement.
The velocity terms are initialized as zero since no a priori course informa-
tion is assumed. The assumed mean center frequency (?b) is taken as the true
value for the a priori runs and as the first frequency measurement when no a
priori knowledge is assumed. A priori values for velocity and center fre-
quency with their uncertainties that were used in the simulations were:
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Velocity: case 1)
2)
3)

Center Frequency: case 1)
2)

=0; ch = 15
= 10; °Vo = 4
10; aVo =2

1072

=150
1 fo
107"

=1; ofO

P B
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CHAPTER IV
DISCUSSION OF SIMULATION RESULTS

4.0 OVERVIEW OF RESULTS PRESENTED

The TMA scenarios described in the previous chapter were simulated with
the overall objective of evaluating the importance of external information in
achieving accurate and timely target motion solutions. The MLE and MAP pro-
cedures using the numerical algorithms derived in Chapter II were chosen as
the methods to best demonstrate the potential utility of such information.

The improvement attained by incorporating a priori statistical estimates of
range, speed and center frequency is shown by comparing the solution results
of Monte Carlo simulations using the MAP estimation procedure to those using
the MLE. The MLE procedure uses the external information merely for initial-
jzation of the iterative numerical solution and not as part of the estimation.

The contribution of the a priori information to the bearings-only and
bearing/frequency solutions is measured by the improved accuracy and reduced
convergence time achieved. The measures of solution accuracy are obtained by
calculating the mean and standard deviation of errors over the Monte Carlo
repetitions. Measure of potential solution quality from the information
available is obtained from the error bounds as calculated from the eigen-
values of the inverse Fisher's information matrix for the estimation problem.
These error-bound estimates are the Cramer-Rao lower bounds on solution
accuracy when evaluated at the exact solution. Solution convergence is
defined as the reduction of the error bounds below some defined level.
Improvement in numerical convergence is measured by the reduction of computa-
tional burden of the algorithm as represented by the number of Gauss-Newton
iterations required for each solution. Numerical convergence probability is
determined from the number of Monte Carlo repetitions at each solution time
which do converge, defined by satisfying the stopping criteria within
21 iterations.
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The results presented in this chapter are separated into three sections,
based on the numerical procedure being evaluated. The first two sections
present the results for evaluation of modifications to the bearings-only
MLE/MAP algorithm which was developed in the previous study. Since the value
of a priori information may be highly dependent on the particular numerical
methods employed, improvements to the algorithms to most efficiently use all
available information were studied. The effect of the numerical modifica-
tions on solution accuracy and convergence is, therefore, evaluated along
with and within the context of the incorporation of a priori information. The
numerical modifications studied are, respectively, calculation of an optimum
step size at each Gauss-Newton iteration by a cost function 1ine search and
solution of a three-state, relative-motion problem during the first TMA leg.
The third section presents results of simulations which were run to evaluate
the incorporation of a priori information into a multisensor (bearing and fre-
quency) MLE algorithm without own-ship maneuvers.

4.1 BEARINGS-ONLY MLE USING OPTIMUM STEP-SIZE CALCULATION

The results of the previous study's simulations indicated that the prin-
cipal advantage of a priori range information is related to the numerical con-
vergence of the solution procedure rather than its ultimate accuracy. Modifi-
cation of the Gauss-Newton algorithm to improve numerical convergence without
a priori information may therefore affect the observed value of incorporating
such information into the algorithm. The Gauss-Newton algorithm used previ-
ously was modified, as described in Section 2.1, to optimize the step size
taken at each iteration in the calculated direction with respect to the actual
cost function. Previously, the step taken was the full solution step of the
linearized optimization, subject only to a magnitude 1imit, without regard to
the change in the actual cost function. It was conjectured that optimizing
the step size would reduce the numerical convergence time of the algorithms,
as well as improve the solution quality early in the problem. This, however,
may in turn either negate any improvement previously provided by incorpora-
tion of a priori information or may enhance such improvement by more optimally
using the available information.
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Thé results of Monte Carlo simulation runs are presented using the modi-
fied Gauss-Newton procedure. The TMA scenarios simulated are as described in
Chapter III and are the same as in the previous study. Both closing and
crossing target aspects are analyzed with own ship executing maneuvers. For
the direct-path case (range = 20 kiloyards) runs were made with assumed a
priori ranges in the direct, first CZ and second CZ propagation paths. CZ
runs have the same true and assumed paths. In addition, direct-path runs were
made with true range of 10 kiloyards and assumed range in the direct path.

One direct-path run was also made with bearing error standard deviation of

0.5 degree (all others were with °B = 0.2 degree). Additional first CZ runs
were made including speed a priori information with estimate equal to the true
target speed (10 knots) and standard deviations of 4 and 2 knots.

4.1.1 Preliminary Study of the Step-Size Optimization

Before considering the results of the Monte Carlo simulation runs, a pre-
liminary analysis of cost function behavior versus step size and of its mini-
mization is carried out. In addition, the computational cost for the inclu-
sion of the step-size optimization procedure in the MLE algorithms is esti-
mated. This estimate may be used to weigh any benefits from the procedure
against its added cost.

The modified Gauss-Newton method solves the non-linear optimization
problem with an iterative series of linearized solutions, calculated until
satisfying a convergence criterion. The change in the solution at each itera-
tion may be expressed as the vector difference between the previous solution
and the present one. This solution update is given at each iteration by:

= = -qu !
& = anxg = -, (1)
where Ago is the solution vector calculated by the Gauss-Newton procedure as

described in Section 2.1, and a is the magnitude of the step actually taken
from the previous solution in the 950 direction. Under the assumptions used
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to ensure convergence of the modified Gauss-Newton procedure, the change in
the cost function, AJ, may be modeled approximately as a quadratic function
of the solution change vector using terms of the multidimensional Taylor

series expansion

Al = vgag + 3 Ax_Tv_vldg (2)

AP s g e e 3.

This may then be expressed as a function of the step size, using Equation (1):

! - T -1 az -1 T -1
l A = 'GV_&J\I' VZ.J + v V_X_J‘P Vivi‘”' VEJ _‘
i
~ ~ 2 A ’
19 = iy + 5 4TS,
| o
| ar 2 |
] T
5 8 = Uy (o + 3 r) (3) |
where
To ol
9. V. JAx
r o= =0"x"x"=0 (4)
2Zo¥=o
for ac(0, 17.

The step-size 1imiting procedure used in the previous study set a to a value
between the 1imits of 0 and 1 based on a maximum allowable magnitude for ég
defined by reasonable physical constraints. The modified procedure deter-
mines a by a numerical Tine search minimization of J(g,a) at each iteration.
This procedure may be modeled analytically by minimizing Equation (3) with
respect to a. This yields

1/r;r>1 ( I
a = 5)
min 1 ; otherwise

!
i
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when subject to the constraint ae[0,1]. The actual procedure used, however,
constrains the step size as[cmin, “max] where Onin > 0 is the minimum step

taken and %max < 2 is the step-size 1imit, whose values are determined as
described in Section 2.1.

In preliminary runs of the algorithm in both the original and modified
form, the behavior of J(a) was observed at several intervals along the calcu-
lated solution direction. These observations showed that at numerous itera-
tions the minimum occurred at a's near to or less than zero. This was most
prevalent before complete solution observability but also occurred later in
the problem. Since the quadratic model above (Equations (2) through (4)) does
not predict optimum solutions for a < 0, this result reflects a domination by
higher order, (unmodeled) terms indicating that J(a) is not approximately
quadratic at the trial solution. In fact, if the "optimum" step is taken, the
solution collapses to the previous solution. The calculated Gauss-Newton
solution is therefore not always consistent with minimization of the cost
function. To solve this problem, it was found that taking a limited step in
the Gauss-Newton solution direction allowed eventual convergence even though
the cost function was not minimized. This observation clearly shows the value
of step-size 1imiting for solution stabilization. However, oscillation
between poor solutions may still occur preventing early convergence. Step-
size optimization should help convergence further by directing the Gauss-
Newton solution towards consistency with the cost function minimum (except
under the noted singular conditions). Minimization of the cost function in
the vicinity of the converged solution may also improve solution accuracy,
especially early in the problem when solution updates are large.

Inclusion of a priori information appears to stabilize the Gauss-Newton
solution such that wild oscillation would not occur even without step-size
1imiting. This is clearly seen in the cost function values at and in the
direction of the calculated solution. Optimization of step size would there-
fore not be expected to improve convergence of the MAP algorithm to the same
extent that it would for the MLE. However, solution accuracy may be improved
during the problem time before solution convergence in the same manner as
without a priori information.
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Estimates for the computation cost of the step-size optimization are
made by running simulations for various problem times without the Monte Carlo
statistics calculations. Cost estimates are in the form of computer proces-
sing (CPU) time. Although such estimates are approximate and the true cost
may vary for different data sets and TMA conditions, as well as for different
line search algorithms and codings, they may be helpful for rough comparisons
between the added calculations' cost and any measured benefit. These test
runs produced estimates for the added cost of the step-size calculations to
the Gauss-Newton algorithm of 15 to 25 percent. In addition, these direct
propagation path simulations indicated that the savings in computation time
from better convergence of the modified algorithm did not make up for the
added cost of the procedure. However, an enhanced quality of early solutions
may be gained.

4.1.2 Numerical Convergence Properties of the Modified Gauss-Newton
Algorithm

The numerical convergence properties of the modified bearings-only algo-
rithm are shown in Figures 4-1 through 4-9 for all TMA geometries simulated.
The number of Monte Carlo repetitions, out of the 30 run, which meet the
numerical convergence criterion are plotted for each calculation time along
with the average number of Gauss-Newton iterations required for convergence.
These measurements represent, respectively, the probability of obtaining a
converged solution at each problem time and the computational requirement for
convergence. In each figure, the MLE and MAP solution results are presented
for cases assuming the correct propagation path and using a measurement
bearing-error standard deviation of 0.2 degree. Results are presented for
direct, first CZ and second CZ propagation path cases without use of a priori
speed estimates. For the first CZ cases, results are also given for the MAP
solution with a priori speed estimates with standard deviation of 4 and
2 knots (Figures 4-6 and 4-7). Direct-path results are given for cases with
initial true ranges of 20 and 10 kiloyards. The results from the use of the
step-size 1imiting algorithm are also included for the direct-path, crossing-
course case (Figure 4-2b). Comparison of the two procedures for the other
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geometries may be made using the results given in Section 3.1.3 of the previ-
ous report (Reference 4).

The results of numerical convergence frequency versus problem time for
the Monte Carlo repetitions shown here generally agree with those of the pre-
vious study. They clearly demonstrate the benefit derived from incorporation
of a priori range and speed inputs towards increasing the probability of
numerical convergence. This is particularly noted for the difficult geome-
tries and during the early parts of the problem. For the direct-path cases,
the MAP algorithm frequently converges on the first leg while the MLE almost
never does. Since the complete solution is not observable, this behavior is
expected and does not represent a significant advantage to the MAP solution.
After the first leg, convergence is virtually equivalent for both cases. The
MAP solution does converge more frequently during the maneuver. The first and
second CZ cases with the closing target course geometry show a marked increase
in convergence probability due to the use of the MAP algorithm. This is seen
during the second through fourth TMA legs of the first CZ case and throughout
the entire run for the second CZ case.

The use of the optimum step-size calculation appears to increase the
probability of convergence for both the MAP and MLE algorithms over the step-
1imiting method. The measured improvement in convergence due to a priori
information use therefore remains approximately the same.

The previous study concluded that the major computer burden of the algo-
rithms is associated with the unsuccessful search for a (numerically) con-
verged solution, and therefore the MAP solutions require fewer computations
than the MLE simply because more solutions converge within the maximum itera-
tion 1imit. This conclusion is only partially substantiated by the results
shown here for the algorithms using optimum step size. The average number of
iterations required for convergence versus problem time is plotted for all
converged Monte Carlo repetitions. These numbers therefore exclude any com-
puter cost due to a solution failing to converge with the alloted Gauss-Newton
repetitions. In general, the results for the crossing-course geometries show
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little difference in average iteration number between the MAP and MLE solu-
tions. However, those for the closing course, a more difficult TMA geometry,
show the MAP to converge on average with fewer iterations. This is particu-
larly the case during the early legs and with the CZ cases.

S

4.1.3 Solution Behavior for Correct-Path Hypotheses

The earlier results from MAP and MLE algorithms, not employing step-size
optimization, indicated that the major value of a priori range information was
| improved numerical convergence of the solution rather than improvement of the
' intermediary and ultimate solutions. Therefore, it was observed that
l although comparison was made to MLE algorithms which benefit from good initial-
ization using the a priori range estimates, the value of using correct a
priori range information in a MAP algorithm was disappointing. Little gain in
solution accuracy and solution convergence time was measured.

§ Figures 4-10 through 4-13 show the solution errors as a function of prob-
lem time for simulations employing step-size optimization and using the cor-
rect prdpagation path assumptions for solution initialization and a priori
estimates. Parts a, b and c of each figure give the range, speed and course
errors, respectively, averaged over all numerically converged Monte Carlo
repetitions. The solid and dashed lines represent the root mean square errors
of the MAP and MLE solutions respectively, and the symbols (e and +) represent
the mean errors at each problem time. Results are presented for the direct-
path (20-kiloyard range) case with closing course geometry and for all three
propagation paths (direct, first CZ and second CZ) with crossing course geom- !
etry. The CZ results for the difficult closing geometry are basically very
poor and are not presented. The direct-path results show only a very small
(if any) decrease in range and course RMS error due to a priori information
use and no difference in solution convergence time. The speed RMS error for
the MAP algorithm is considerably lower during the second TMA leg. A very
small negative bias in the MAP speed error is still noted at the later legs
after convergence for the closing-course case. The results for the first and
second CZ cases with crossing course show a more pronounced decrease due to

!
!
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the MAP algorithm in range, speed and course RMS error in the early legs.
This difference disappears at or before solution convergence. The range mean
errors for both the MAP and MLE methods are biased even at later problem
times, however in opposite directions.

The above results, therefore, do show that for an algorithm using an
optimum step-size calculation the incorporation of a priori information does
yield, for some geometries, significant improvement in early leg solution
accuracy. However, ultimate solution convergence and ultimate solution accu-
racy are not enhanced.

4.1.4 Error Lower Bounds and Solution Convergence

In the operational environment, values for the TMA solution errors are
not known. It is important, therefore, to estimate solution performance and
convergence status. An estimate for Fisher's information matrix (¢ matrix) is
calculated as part of the MLE and MAP solution procedure. The inverse of this
matrix, when calculated using the true solution, is the Cramer-Rao lower bound
on the solution error covariance. Therefore, this can be used even when cal-
culated at solution estimates, to indicate sensitivity of the solution to
additional measurements and to place a relative estimate on the solution qual-
ity theoretically obtainable. The covariance lower bound matrix is converted
to independent scalar parameters by partitioning the inverse matrix (¢”!) into
2X2 position and velocity submatrices and computing their eigenvalues. The
square root of the larger eigenvalue for each set represents the major axes of
the position error ellipse and of the total velocity error ellipse. These are
theoretical lower bounds on range error and total velocity vector error,
respectively.

The major axes for the range and velocity error bounds are plotted in
Figures 4-14 through 4-18 for the direct, first CZ and second CZ path cases.
The crossing geometry results are included for all three path cases, whereas
the closing course results are for only the direct and first CZ cases. The
error bounds for both the MAP and MLE solutions are included (solid and dashed
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lines) along with the Monte Carlo standard deviations for solution times with
a high (>67 percent) probability of convergence (e and +). The observations
made from the error-bound plots are essentially the same as those for the
algorithm without step optimization presented in the previous report. The
error lower bounds are lower for the MAP solutions than those for the MLE,
particularly during the early legs. The measured increase in solution accu-
racy for the MAP algorithm, noted in the previous section but not in the pre-
vious report, is therefore due to better utilization of the a priori informa-
tion by the algorithm modified for step optimization rather than due to any
enhancement in the best solution theoretically achievable. Consequently, the
3 solution convergence behavior for both the MAP and MLE remains unchanged by
the modified algorithm.

D e Y UV

E———

Table 4-1 presents a summary of the numerical and solution characteris-
tics for the modified bearings-only MLE and MAP algorithms. Results for simu-
‘ lations of each geometry/path hypothesis are included. Included in the sum-
§ mary for each simulation are averages of the numerical convergence measure-

’ ments, estimate for solution convergence time and the RMS error characteris-
tics of the solution at the determined convergence time. The criterion for
solution convergence was defined as in the previous study as the time at which
the velocity major axis error bound reaches 1 knot (10 percent of actual
velocity magnitude). This is somewhat arbitrary but is sufficient for compar-
ison purposes. The range error bound and the Monte Carlo solution error sta- W
tistics may be used to confirm the solution convergence time and the converged i
solution's validity. The values presented in Table 4-1 may be compared with
those in Table 3-1 of the previous study for the algorithms without step opti- ‘
mization. q

; Using the statistics presented in the table comparison between the MAP

and MLE algorithm may be made and thus the value of a priori information may

be estimated. The number of converged Monte Carlo repetitions and the number
‘ of Gauss-Newton iterations per repetition averaged over all solutions of the
/ runs are indicative of the relative computation costs of the runs. The solu-
tion convergence time and the RMS errors at that time give a relative indica-
tion of the solution's timeliness and quality. In general, the use of a priori

ST e T TEr e B e
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information in the algorithm with step optimization decreases the whole run
average computation cost of obtaining numerically-converged solutions for

both closing and crossing-course geometries and for all propagation paths.

The CZ cases for the crossing-course geometry, however, are only slightly
affected. Solution convergence time appears to be unaffected by the use of a
priori estimates. However, in the simulations used here, the defined converg-
ence criterion often is not reached by the end of the problem time. Solution
accuracy, as defined by RMS error averages across Monte Carlo repetitions,
appears to be inconsistently improved by using the MAP algorithm. The
crossing-course geometries show little difference in RMS range, speed and
course errors at the convergence times between the MAP and MLE solutions. The
direct and second CZ cases with closing-course geometry have slightly
decreased range and speed RMS error from the use of correct a priori range
information, and the first CZ case has decreased speed RMS error from a priori
speed estimates. It should be noted that the error estimates compared are
those at the solution convergence time only and that the results of Sec-

tion 4.1.2 should be used for further comparisons. In addition, the error
estimates based on the Monte Carlo repetition averages have limited useful-
ness since 30 repetitions are probably not sufficient for accurate

estimation.

4.2 BEARINGS-ONLY MLE WITH THREE-STATE, RELATIVE-MOTION SOLUTION

The calculation of a three-state solution to the bearings-only TMA prob-
lem was incorporated into the MLE/MAP algorithms in order to optimally utilize
the available data when the full solution is not theoretically observable.

The results presented in this section are from simulations using the modified
Gauss-Newton algorithm (with step optimization) with a range-normalized,
relative-motion solution calculated during the first 5-minute TMA leg. This
observable three-state solution, along with any range and/or speed a priori
information, is used for initialization of the full, four-state solution

after the first maneuver. The details of the three-state solution methodology
and the optimum bootstrap procedure is presented in Section 2.2. This sec-
tion presents an evaluation of the use of this procedure both in obtaining
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useful TMA solutions during the first leg and for initializing the full, abso-
lute solution. As in the previous section, the impact of the algorithm modi-
fication on the optimum use of a priori information is studied.

4.2.1 Numerical Convergence Properties of the Modified Gauss-Newton Algo-
rithm Three-State Solution Initialization

Plotted in Figures 4-19 through 4-21 are the measurements representing
convergence probability and average computation cost of Monte Carlo simula-
tions of the MLE/MAP algorithms with a three-state, relative-motion solution
calculated for the first 5 minutes of each run. The number of converged Monte
Carlo runs at each time for the full solution are also plotted for comparison
purposes. The average number of iterations for the four-state solution runs
are not plotted since they are very nearly equal to the values for the merged
solution runs already plotted. The simulated TMA runs presented are the
direct-path cases for both closing and crossing-target courses and the second
CZ path case with crossing-target course. A1l of the runs presented have
bearing measurement error standard deviation of 0.2 degree, use correct.
assumed propagation paths for range initialization and a priori information,
and use no velocity a priori estimates.

The results for the direct-path runs indicate that the use of the three-
state solution as initialization to the observable full solution does not
improve the number of Monte Carlo runs which converge nor decrease the number
of Gauss-Newton iterations required for convergence. It does, however, pro-
vide observable three-state solutions during the first leg with high proba-
bility of numerical convergence and low computational cost. This provides a
great advantage over the four-state solution which has very low convergence
probability and high computation cost during the initial leg because of its
lack of observability. The three-state solution, therefore, provides for
better use of available data and a priori information when the full solution
is unobservable. In Figure 4-21, the use of the three-state solution during
the first leg of the second CZ, crossing-course case is again shown to provide
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improvement during the first leg but no improvement to the later, full-
solution calculations. In fact, the probability of convergence is reduced
when the three-state solution is used for initialization. In the CZ cases,
the three-state solution should really be calculated beyond the first leg when
the observability remains poor. Unfortunately the three-state solutions are
distinct from one leg to the next and cannot be continued.

4,2.2 Error Behavior of the Calculated Solutions

The range, bearing, speed and course RMS errors over the Monte Carlo
repetitions are plotted in Figures 4-22 and 4-23 for the direct-path (true and
assumed) simulations using the MLE/MAP algorithms with three-state solution
calculated during the first leg. The full-solution values from which the
plotted errors are calculated are determined during the first leg from the
relative-motion solutions combined with own-ship motion values and the a
priori estimates or initializations. For the MAP algorithm, these calcula-
tions are made in an optimal manner with the a priori estimates weighted by
their uncertainties. Also plotted are the RMS error values for the MAP Monte
Carlo repetitions of the completely four-state algorithm. These values are
also included in Section 4.1.2. These plots indicate no difference in solu-
tion quality for any of the parameters after the first leg. Therefore, the
three-state solution initialization to the MAP algorithm does not appear to
enhance solution accuracy. During the first leg, the MAP algorithm with the
three-state solution has greater range RMS errors and basically no difference
in bearing, speed and course errors as compared to the full solution. This
occurs in spite of improved convergence properties during this leg before the
full solution is theoretically observable. In addition, the measured useful-
ness of a priori information is the same between the two procedures.

4.2.3 Summary

Table 4-2 summarizes the Monte Carlo statistics for the TMA solutions of
the MLE and MAP algorithms with and without the range-normalized, relative-
motion solution calculation during the first leg. The convergence properties
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and the RMS errors are given for the solutions calculated at the end of the
first leg (5 minutes) and at the beginning of the second leg (6 minutes).
These solutions, therefore, represent the initialization to and the calcula-
tion of the first solution after a maneuver (i.e., after the problem becomes
theoretically observable). The cost and value for the use of the three-state
solution initialization, as well as that for the use of a priori information
may be studied. This summary basically substantiates the findings of the pre-
vious two sections. The only real advantage of the three-state solution as
implemented here is in obtaining numerically converged solutions with rela-
tively low computation cost when the full solutions are not observable. A
more important influence on the quality of the initial, observable, full-
solution is the use of a priori estimates.

4.3 BEARING/FREQUENCY MULTISENSOR MLE WITH THE MODIFIED GAUSS-NEWTON
ALGORITHM

Results are presented from simulations of bearing/frequency (Doppler)
TMA without own-ship maneuvers using the MLE and MAP procedures modified to
accept multisensor measurements. The numerical solution method used is the
modified Gauss-Newton algorithm with step optimization. The mathematical
development of the estimation procedure and details of the algorithm used are
given in Chapter 2 and the Appendix. The TMA simulations presented are the
direct-path cases (10-kiloyard range) with closing and crossing initial tar-
get course and the first CZ case with crossing target course. The bearing
measurement error standard deviation is 0.2 degree for all cases, and the
frequency error standard deviations used are 1072 and 107% in relative units
to the mean center frequency (?b = 1). The a priori information utilized by
the MAP estimation procedure and for initialization of both the MLE and MAP
solutions consist of range (propagation path), velocity and center frequency
estimates with their uncertainties. For all runs the range a priori estimae
is the true propagation path, the velocity estimate is zero with magnitude
1imit defined by the standard deviation of 15 knots, and the center frequency
estimate is the true value with standard deviation weights of 1072 and 107",
The measurements describing the numerical convergence behavior and solution
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quality of the procedure are plotted and discussed in the following sections.
Again, the results are analyzed with regard to an evaluation of the benefits
provided by a priori information use. Comparisons are made among the MLE
algorithm, the MAP without accurate center frequency information (cf = 1072)
and the MAP with accurate center frequency estimate (cfo = 107"), denoted
MAPf, for each TMA geometry and the two frequency error standard deviations.

4,3.1 Numerical Convergence Properties of the Algorithm

The number of converged Monte Carlo repetitions and the average number of
Gauss-Newton iterations per repetition are plotted in Figures 4-24 through
4-26 for each calculation time. These measurements represent the probability
of, and the computational cost for obtaining convergence of the MLE and MAP
algorithms. The results for all cases indicate a general enhancement
(increased 1ikelihood and decreased cost) of the numerical convergence
derived from the a priori information as used by the MAP algorithm. The use
of a center frequency a priori estimate with low uncertainty (the MAPf runs),
in particular, provide the greatest improvement. This solution provides
nearly complete convergence with few required iterations throughout all runs
simulated. The difference between the MAP and MAPf runs is particularly large
in the runs with the more accurate frequency measurements. It appears, there-
fore, that in order to optimally use the measurements along with the a priori
information, an accurate center frequency estimate is important. Without
this, the numerical convergence of the MAP algorithm is only slightly better
than that of the MLE algorithm for runs with the more accurate frequency
measurements (cfm =107%).

4,3.2 Accuracy of the Calculated Solutions

The accuracy of the MLE, MAP and MAPf solutions are presented in Fig-
ures 4-27 through 4-32 for the direct and first CZ path cases, each with fre-
quency error standard deviations of 1072 and 107%. The RMS and mean errors
over the Monte Carlo repetitions are plotted for the range, speed and course
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values calculated from the algorithms' solutions. The realized solution
accuracy, as demonstrated by the RMS errors plotted in the figures, is gener-
ally improved by the a priori information as used by the MAP algorithm. In
addition, the inclusion of an accurate center frequency estimate in the a
priori information (the MAPf solution) further improves the solution quality.

The errors in the solutions for the direct-path, closing-course case
(Figures 4-27 and 4-28) are reduced for the most part by both the MAP and MAPf
procedures. Most of the reduction of range error early in the problem comes
from the use of the MAP algorithm; however, later in the run the most signif-
icant reduction comes from the additional use of an accurate center frequency
estimate. Speed and course errors, however, tend to benefit from both through-
out the run. The same case with more accurate frequency measurements
(ofm = 107%) does not benefit from a priori information as greatly. Range and
speed errors show close to zero decrease from the use of MAP, and the course
error improvement is significant only in the early problem stage. For the
direct-path, crossing-course case (Figures 4-29 and 4-30) the MAP procedure
provides improved solution accuracy, again early in the problem. However,
little difference occurs after the first 6 or 7 minutes into the run. The
improvement due to the a priori information again is less for the case with
the more accurate frequency measurements. The first CZ, crossing-course case
again shows improvement in solution accuracy using the MAP and MAPf proce-
dures. The exact relationships among the three procedures are, however, diffi-
cult to see due to the poor convergence of the MLE algorithm for most of the

run.

In general, the a priori information improves solution accuracy to a
greater degree for cases with the more difficult geametries and less accurate
measurements. In other words, the more observable and accurate the solution
is with measurements alone, the less impact any a priori information will
have. It should be noted how well the MAP procedure with accurate center fre-
quency does for all geometries and measurement errors throughout the entire
run. The mean errors additionally show a high degree of average accuracy with
generally very low bias.
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4.3.3 Theoretical Range-Error Lower Bounds

Theoretical lower bounds for the range-error standard deviations are
represented in Figures 4-33 through 4-35 for the simulations run. The plotted
values are the major axes of the position eigenvalues for the inverse psi
matrix computed during the Gauss-Newton solution procedure. These estimates
for range-error lower bounds may represent the relative potential solution
quality achieved from all available information from the different solution
procedures., In addition, although the values are averaged over Monte Carlo
repetition the lower bound estimates are independent of the number of con-
verged repetitions and do not, in actuality, vary significantly between repe-
titions. An indication of the value of a priori information to solution qual-
ity and solution convergence may be observed. The range RMS errors are also
plotted in order to compare the theoretical values to the solution quality
actually achieved by the algorithms. The plotted results again indicate the
value to range accuracy of using the MAP and MAPf procedures over the MLE,
particularly in the cases with the lowest solution quality. Figure 4-33 shows
the reduction in range error bounds achieved from the use of the MAP algorithm
and the accurate center frequency estimate for the direct-path, closing-
course case. The effect is seen to be much lower for the case with greater
frequency measurement accuracy. Relatively little difference is observed in
Figure 4-34 among the different algorithms for the more observable direct-
path, crossing-course geometry. The first CZ, crossing-course case plotted
in Figure 4-35 shows improvement due to the MAP algorithm but very little from
the use of accurate center frequency estimates.
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CHAPTER V
SUMMARY AND CONCLUSIONS

The value of incorporating a priori information into a TMA solution was
investigated as described in Reference 4. The conclusion of that study, based
on Monte Carlo simulations of Maximum Likelihood and Maximum a posteriori
estimates, was that a priori speed information was very beneficial in early
solution performance; however, (crude) a priori range estimates primarily
aided the initial numerical convergence of the solution iteration procedure.
In effect, the a priori range variance produces a positive definite mean
Hessian matrix which allows numerical convergence.

5.1 IMPROVED ITERATION PROCEDURES

This study examined two procedures for improving solution convergence
during early parts of the problem to ascertain whether the original solution
procedure was optimum. The previous solution procedure iterated towards a
null of the gradient of the a posteriori density function (or likelihood
ratio) using step-size constraints to bound the jteration excursions. In this
study, the procedure was modified to minimize the logarithm of the a
posteriori density function (or the log likelihood ratio) using a line search
along the direction of the Gauss-Newton step. Several useful results were
obtained from that study.

The line search does not always produce convergence to the minimum solu-
tion. At times when observability is poor, the line search occasionally pro-
duces a zero step which would retain the original solution and, therefore, not
incorporate the added measurements. It was found that a heuristic procedure
should be used in that case, which involves taking a limited step in the

Gauss-Newton direction without regard for minimizing the cost function. This
procedure eventually resulted in obtaining a minimum solution. In effect,
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when this procedure is invoked the cost function is not approximately quadra-
tic at the current solution iteration and one must step away from that solu-
tion before proceeding with the normal optimization process.

The modified Gauss-Newton procedure does improve numerical convergence
for both MAP and MLE solutions, but the MAP solution still converges more
often during periods of poor observability. The net cost of incorporating the
line search is increased even though the number of iterations is reduced. The
increased cost is not significant and is within the tolerance of program opti-
mization.

The modified Gauss-Newton procedure does result in a significant improve-
ment in course and speed solutions during periods of poor observability when a
priori range estimates are included. When sufficient data is processed, the
solutions converge to the same values regatdless of numerical procedure and
essentially without regard to use of a priori range information.

The other procedure tested was the estimation of an observable (three- §
state) relative motion solution on the first leg which is bootstrapped to a
full solution on the second leg. The procedure can be applied with or without
a priori information by using a T1ine search on range during the second leg.

It was found that the relative motion solution can be solved consistently with
little cost because it is observable. It can be coupled with a priori range
or speed information to generate single-leg solutions for tactical informa-
tion. It was found, however, that numerical convergence on the second leg was
not significantly improved by using the bootstrapped solution rather than a
zero-speed initialization. However, the relative motion situation is still a
useful feature because it can be computed along with the full solution and be
used for tactical inputs when the full solution does not converge. One
approach that was not studied was estimation of range by combining relative
motion solutions from individual legs. There were insufficient resources
available to pursue that study but it would be similar to the widely used
Ekelund procedure. In any event, it is recommended that one incorporate a
priori information on the first TMA leg by solving for the relative motion
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solution and combining that with the a priori information in a least-squares
sense. This conclusion is based on numerical convergence behavior of the
three-state and four-state solutions. After the first own-ship maneuver, the
four-state problem should be solved if it converges because the previous rela-
tive motion solution is invalid after a maneuver.

5.2 BEARING/FREQUENCY MULTISENSOR TMA

The using of both bearing and frequency (Doppler ranging) measurements
can allow solution of the TMA problem without maneuvers. In the context of
this study, that problem was examined to ascertain the value of a priori esti-
mates of range, speed and/or base frequency. The multisensor MLE and MAP pro-
cedures generally performed quite well when bearing and frequency measurement
were accurate. For all cases simulated, a priori information provided enhanced
numerical convergence of the algorithm with the use of an accurate center
frequency estimate providing the greatest improvement. The improvement in
convergence was particularly large for the runs which had both the more accu-
rate frequency measurements and an accurate center frequency a priori esti-
mate. Without the latter, the value of the other a priori information was
minimal. The solution accuracy, as measured by the RMS errors, was improved
by both the use of a priori range information and an accurate frequency esti-
mate. However, in this situation the runs with the less accurate frequency
measurements were those which were most improved. This result was reflected
as well by the theoretical range lower bounds on range error standard devia-
tion. Solution accuracy was most enhanced by the a priori information for the
cases with difficult geometries and less accurate measurements.
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APPENDIX
DEVELOPMENT OF GRADIENT COMPUTATIONS FOR BEARING AND FREQUENCY MLE

Assuming that independent Gaussian bearing and frequency measurements
(Bm, fm) are made at discrete times, tk’ the log likelihood ratio for the mul-
tiple observations is

N
A = gox 3 (B (K) - B(K))?
B k=1
N ~
+ 2%; 2 (F (k) - Fonlk))?
k=1
+ g-log(Znoéog) (1)

where A is the conditional probability density function for the joint measure-
ment sequences, given the solution (x(k)) and the true base frequency (fo).
The target solution vector is contained in B and n.

1 ;l(to) + (tk ~ to);3(to) B xlos(tk)

E(k) = tan~ = = (2)
x2(to) Aty - to)x4(to) - xZos(tk)
n) =1 - Rk) (3)

c
R(K) = (Ra(t,) - Kqoo(t,))sin B(K) + (xg(t,) = Kgoq(t))cos B)  (4)

When a priori knowledge of base frequency has a Gaussian distribution, the a
priori information can be incorporated and a likelihood ratio developed which ;
is conditional only an x. Note:

A E p{Bm}/lp{fm}/ﬁ, fo )




Then, if pfo(fo) is the a priori probability density for fo:
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Equation 13 can be manipulated to an alternate form: ,
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The log likelihood ratio for x is therefore

N
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+ st 37 n2(k) (19)
with

fo=F, + X (20)

The last term is much less sensitive to x than any other term and can be con-
sidered to be constant. The gradient of JLR = -4nA”, with respect to 5(t0),
is therefore
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The last term can be shown to be identically zero. Thus:
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The second gradient of JLR is
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The expected value of the second gradient is required for the Gauss-Newton

procedure. Under the assumption that x is correct, then one can compute after
tedious algebra:
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The last two terms can be dropped because they are inconsequential when com-
pared to the others when cvf/?o is small (e.g., of the order of R/c). The equa-
tion can be simplified without hampering convergence to
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reduce to
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where a is the projection of any vector on vxﬁ. This quantity is zero only
for a vector which is orthogonal to the gradient at all time steps. Otherwise
this quantity is positive. The second term in brackets represents the infor-
mation lost by not knowing the actual base frequency. If 0f>>0f° or when N
becomes sufficiently large, this information loss disappears.

The gradients of B and R must be evaluated.
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The modified Gauss-Newton solution for the step in x is
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Unless both ABk and Aﬁk are zero at every time step, the projection is always [
positive.

The accuracy of the base frequency estimate (?O) depends on both error in
the measurement and error in the solution (x). Let fo be the true center fre-
quency and Wi be the frequency measurement error. Then
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